Conductivities of Room Temperature Molten Salts Containing ZnCl₂, Measured by a Computerized Direct Current Method

Hsin-Yi Hsu and Chao-Chen Yang

Graduate School of Engineering, Science and Technology, National Yunlin University of Science and Technology, 123 University Road, Sec. 3, Touliu, Yunlin, Taiwan 640, R. O. C.

Reprint requests to Prof. C.-C. Y.; Fax: 886-5-531-2056; E-mail: yangcc@flame.yuntech.edu.tw

Z. Naturforsch. 57 a, 129-135 (2002); received December 18, 2001

The conductivities of the binary room-temperature molten salt (RTMS) systems $ZnCl_2$ -N-n-butylpyridinium chloride (BPC), $ZnCl_2$ -1-ethyl-3-methylimidazolium chloride (EMIC) and $ZnCl_2$ -benzyltriethylammonium chloride (BTEAC) have been measured at different temperatures and compositions by a d.c. four-probes method. The conductivities of the three RTMS are in the order $ZnCl_2$ -EMIC > $ZnCl_2$ -BPC > $ZnCl_2$ -BTEAC.

In ZnCl $_2$ -BPC the conductivity at 70 to 150 °C, is maximal for 40 mol% ZnCl $_2$. In ZnCl $_2$ -EMIC, the conductivity below 130 °C is almost constant for 30 to 50 mol% ZnCl $_2$ and has the lowest activation energy 25.21 kJ/mol. For these two systems, the conductivities decrease rapidly beyond 50 mol% ZnCl $_2$ owing to the rapid increase in cross-linking and resultant tightening of the polyelectrolyte structure. As to the ZnCl $_2$ -BTEAC system, the conductivities at 110 - 150 °C decrease slowly for 30 - 60 mol% ZnCl $_2$. The conductivities of the ZnCl $_2$ -EMIC melt are compared with those of the AlCl $_3$ -EMIC melt previously studied.

The stability of the ZnCl₂-EMIC melt system is explored by the effect of the environment on the conductivity and the Far Transmission Infra Red (FTIR) spectrum. It reveals that the effect is slight, and that the ZnCl₂-EMIC melt may be classified as stable.

Key words: Conductivity; Room-temperature Molten Salt; ZnCl₂; Direct Current Method; Stable Melt.

Introduction

Molten salts possess some unique properties, e. g., high conductivity, a wide electrochemical window and low vapor pressure. Therefore molten salts are suitable electrolytes for the electrodeposition of metals. In recent years, molten salts have extensively been explored for their application as, e. g., electrodeposition electrolysis of metals, battery and fuel cell electrolytes, media for plating optical data storage materials, and melt catalysts for syntheses of new chemicals. Especially research on room temperature molten salts (RTMS) has drawn considerable attention. Hussey [1] has noted that industrial exploitation of RTMS looks extremely favorable. Unfortunately, however, conductivity data for RTMS are still

One of the most well known RTMS contains AlCl₃. We [2] have reported the conductivities of the three binary systems AlCl₃-BPC, AlCl₃-EMIC and AlCl₃-BTEAC by a computerized direct current method.

AlCl₃ is a strong Lewis acid, so that the melts containing AlCl₃ are easily affected by the environment. This makes these melts often inconvenient for handling. Therefore more stable RTMS are wanted.

In the present study, the three systems ZnCl₂-BPC (N-n-butylpyridinium chloride), ZnCl₂-EMIC (1-ethyl-3-methylimidazolium chloride) and ZnCl₂-BTEAC (benzyltriethylammonium chloride) were selected for measurements of the conductivities. The ZnCl₂-BPC system was used in the electrodeposition of armorphous Co-Zn alloy from molten CoCl₂-ZnCl₂-BPC by Koura et al. [3]. In the literature, the conductivity of various ternary melts was reported, but the conductivity of the binary ZnCl2-BPC was not presented. Sun et al. [4 - 6] studied on the electrodeposition of Zn, Co, Zn-Co and Zn-Cu alloys from the acidic ZnCl₂-EMIC melt. However the conductivity of ZnCl₂-EMIC melt was not reported. BPC and EMIC are hardly commercially available and therefore expensive, although they are needed as RTMS. BTEAC is commercially available and cheaper.

0932-0784 / 02 / 0300-0129 \$ 06.00 © Verlag der Zeitschrift für Naturforschung, Tübingen · www.znaturforsch.com

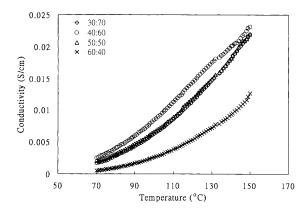


Fig. 1. The electrical conductivity of molten mixtures of ZnCl₂:BPC as a function of temperature. Composition in mol%: \diamondsuit , 30:70; \diamondsuit , 40:60; \triangle , 50:50; \times , 60:40.

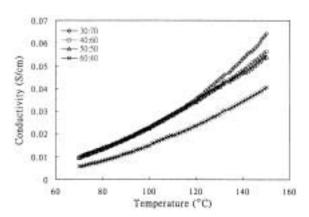


Fig. 2. The electrical conductivity of molten mixtures of ZnCl₂:EMIC as a function of temperature. Composition in mol%: \diamondsuit , 30:70; \diamondsuit , 40:60; \triangle , 50:50; \times , 60:40.

In this work, the conductivities of the three systems ZnCl₂-BPC, ZnCl₂-EMIC and ZnCl₂-BTEAC are reported for the first time. The conductivity of ZnCl₂-EMIC melt is compared with that of AlCl₃-EMIC melt. The effect of the environment on ZnCl₂-EMIC melt is explored by the conductivity measurement and Far Transmission Infra Red (FTIR) spectroscopy.

Experimental

ZnCl₂ (Merck, anhydrous, 98%), BPC (N-n-butylpyridinium chloride, TCI, 98%), EMIC (1-ethyl-3-methylimidazolium chloride, Aldrich, 98%) and BTEAC (benzyltriethylammonium chloride, Acros, 98%) were used as received. The molten salts with different molar ratios were prepared by continuous stirring for 12 hours under a purified nitrogen atmo-

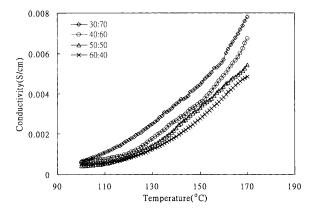


Fig. 3. The electrical conductivity of molten mixtures of ZnCl₂:BTEAC as a function of temperature. Composition in mol%: \diamondsuit , 30:70; \diamondsuit , 40:60; \triangle , 50:50; \times , 60:40.

sphere in a glove box. The electrical conductivities of these melts were measured by the computerized measurement system for a d. c. four-probes method described in [2]. Pt electrodes were used, and the conductivities of the melts were measured under purified nitrogen. The furnace was controlled by a PID-Controller, the thermocouple of which measured the temperature in a silicon oil bath. The temperature of the melt near the voltage drop section was also measured by a thermocouple.

ZnCl₂-EMIC melt was used to explore the effect of the environment. The conductivity and FTIR spectra of this melt were measured soon after its preparation in a glove box and, after storing in a simple container after one day, three days and five days.

Results and Discussion

The conductivities of the binaries ZnCl₂-BPC, ZnCl₂-EMIC and ZnCl₂-BTEAC are shown as a function of temperature in Figs. 1, 2 and 3, respectively. The experimental data were least-squares fitted to equations of the form

$$\sigma = a + bt + ct^2,\tag{1}$$

where t is the temperature in °C. The obtained parameters a, b, and c are given in Tables 1, 2 and 3. As the R squared values are larger than 0.998, the above equations fit the experimental data very well. Figs. 1 and 2 show that the specific conductivities of the $\rm ZnCl_2$ -BPC and $\rm ZnCl_2$ -EMIC systems increase smothly with temperature, while this is not the case with the $\rm ZnCl_2$ -BTEAC system, as show in Figure 3.

Table 1. Parameters of (1) for ZnCl₂-BPC.

Melt comp.	$a \times 10^3$	$b \times 10^4$	$c \times 10^6$	R squared	Temp. (°C)
30 mol% ZnCl ₂ 40 mol% ZnCl ₂					70 - 150 70 - 150
50 mol% ZnCl ₂ 60 mol% ZnCl ₂	4.621 7.156	-1.741 -2.028	1.943 1.567	0.99963 0.99874	70 - 150 70 - 150

Table 2. Parameters of (1) for ZnCl₂-EMIC.

Melt comp.	$a \times 10^3$	$b \times 10^4$	$c \times 10^6$	${\cal R}$ squared	Temp. (°C)
30 mol% ZnCl ₂ 40 mol% ZnCl ₂ 50 mol% ZnCl ₂ 60 mol% ZnCl ₂	0.230 -94.34	-6.826 13.63	2.951 1.919	0.99934	70 - 150 70 - 150 70 - 150 70 - 150

Table 3. Parameters of (1) for ZnCl₂-BETAC.

Melt comp.	$a \times 10^3$	$b \times 10^4$	$c \times 10^6$	R squared	Temp. (°C)
30 mol% ZnCl ₂ 40 mol% ZnCl ₂ 50 mol% ZnCl ₂	12.3 7.616	-2.345 -1.598	1.179 0.869	0.9981 0.9975	100 - 170 100 - 170 100 - 170
60 mol% ZnCl ₂	10.9	-2.03	0.988	0.9995	100 - 170

Table 4. Activation energies $E_{\rm a}$ (kJ/mol) from Arrhenius fits (2) of the conductivity data.

Melt composition	30:70	40:60	50:50	60:40
ZnCl ₂ -BPC ZnCl ₂ -EMIC	38.32 28.09	32.96 25.99	35.90 25.21	46.47 29.13
ZnCl ₂ -BTEAC	46.78	49.97	55.29	49.91

These conductivities were fitted by the Arrhenius equation [7 - 10].

$$\sigma = \sigma_0 \exp\left[-\frac{E_a}{RT}\right]. \tag{2}$$

The data for the three melts are shown in Figs. 4, 5 and 6. These results reveal that the Arrhenius equation over the temperature range studied is quite well obeyed. The activation energies ($E_{\rm a}$) are presented in Table 4 [9, 10]. They indicate that the ZnCl₂-EMIC melts have the lowest activation energy, the value being 25.21 kJ/mol for the 50:50 melt. This may be explained by the planarity and small lattice energy [11, 12], the planarity inherent in the imidazolium salt being assumed to promote the conductivity. Further, the lattice energy of the ZnCl₂-EMIC melt is lowest. The binary ZnCl₂-BTEAC melts have the highest activation energy, presumably because of the poor planarity and high lattice energy. Generally, a salt with a

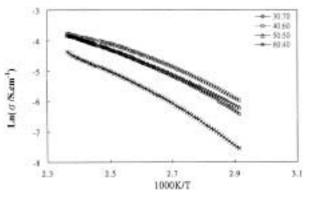


Fig. 4. Arrhenius plots of the electrical conductivity for molten mixture of $ZnCl_2$:BPC. Composition in mol%: \diamondsuit , 30:70; \diamondsuit , 40:60; \triangle , 50:50; \times , 60:40.

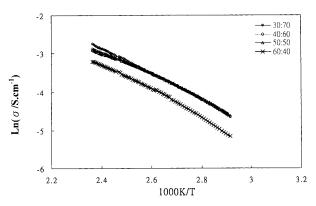


Fig. 5. Arrhenius plots of the electrical conductivity for molten mixture of ZnCl₂:EMIC. Composition in mol%: \diamondsuit , 30:70; \diamondsuit , 40:60; \triangle , 50:50; \times , 60:40.

low lattice energy tends to possess a high ionic conductivity, because a low dissociation energy increases the number of free ions.

The relationship between the conductivity and composition of the three systems at various temperatures is shown in Figs. 7, 8, and 9. Figure 7 shows that there is a maximum of the conductivity for 40 mol% $\rm ZnCl_2$ at 70 to 150 °C. For $\rm ZnCl_2$ -BPC, neither the acid-base equilibria nor the conductivity have been reported. Easteal and Angell [13] have studied the phase equilibria and electrical conductance of $\rm ZnCl_2$ -pyridinium chloride (PC) melt. They indicate that the "ideal" glass transition temperature T_0 and the glass transition temperature T_g show a complex composition dependence. In addition, the phase equilibrium study of the system indicated the existence of four congruently melting compounds: $\rm R_4ZnCl_6$, $\rm R_2ZnCl_4$,

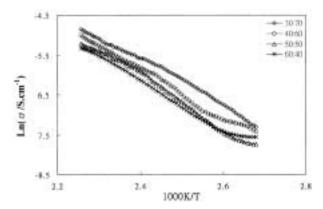


Fig. 6. Arrhenius plots of the electrical conductivity for molten mixture of $ZnCl_2$:BTEAC. Composition in mol%: \diamondsuit , 30:70; \diamondsuit , 40:60; \triangle , 50:50; \times , 60:40.

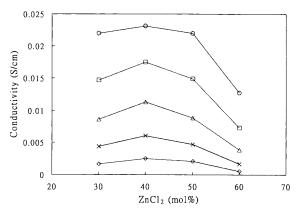


Fig. 7. The electrical conductivity of molten $ZnCl_2$ -BPC as a function of the mol% of $ZnCl_2$ at different temperatures. \diamondsuit , 70 °C; \times , 90 °C; \triangle , 110 °C; \square , 130 °C; \bigcirc , 150 °C.

 $RZnCl_3$, and RZn_2Cl_5 (R = pyridinium cation). On the ZnCl₂-rich side the chloride ion content is insufficient to satisfy individually the tetra-coordination required for the Zn²⁺ ions, forcing tetrahedral ZnCl₄⁻ to share its corners with other ones in order to preserve the favored coordination number. This leads to the formation of Zn₂Cl₇³⁻ structural groups at 40 mol% ZnCl₂, for which evidence has been presented in [14 - 16]. This also leads to increasingly long, and/or complex associations if the ZnCl2 content increase beyond 40 mol%. Based on these phenomena, the conductivity of ZnCl₂-BPC decreases slowly at more than 40 mol% ZnCl₂. The decrease in the thermal expansivity beyond 50 mol% ZnCl₂ is consistent with a rapid increase in cross-linking and resultant tightening of the polyelectrolyte structure of ZnCl₂-PC [13].

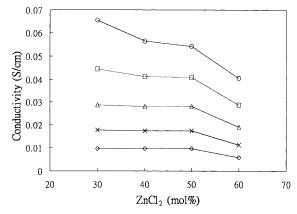


Fig. 8. The electrical conductivity of molten $ZnCl_2$ -EMIC as a function of the mol% of $ZnCl_2$ at different temperatures. \diamondsuit , 70 °C; \times , 90 °C; \triangle , 110 °C; \square , 130 °C; \diamondsuit , 150 °C.

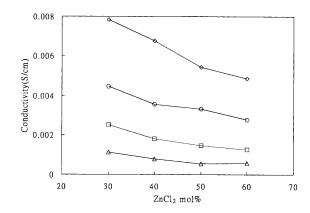


Fig. 9. The electrical conductivity of molten ZnCl₂-BTEAC as a function of the mol% of ZnCl₂ at different temperatures. \triangle , 110 °C; \square , 130 °C; \circ , 150 °C.

It is assumed that ZnCl₂-BPC behaves similarly as the ZnCl₂-PC, the conductivity decreasing rapidly beyond 50 mol% ZnCl₂. Moreover, it is helpful to consult the literature data on ZnCl₂-MCl (M = alkali metal) systems [15, 17 - 19]. From the literature it can be assumed that the melts containing more than 33 mol% ZnCl₂ are acidic, owing to the presence of an excess amount of the Lewis-acidic ZnCl₂. Thus, there are not enough chloride ions to fully coordinate with Zn²⁺, resulting in the zinc species ZnCl₃⁻, Zn₂Cl₇³⁻ and (ZnCl₂)_n, which are chloride ion acceptors. The melts that contain less than 33 mol% ZnCl₂ are assumed to be basic, because there is an excess amount of Lewis-basic chloride ions in the melts. In the basic melt, the major zinc species is

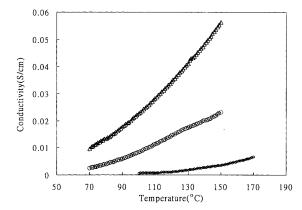


Fig. 10. Temperature dependence of the electrical conductivity of the three binary molten mixtures with $ZnCl_2$ 40 mol%. o, $ZnCl_2$ -BPC; \triangle , $ZnCl_2$ -EMIC; \diamondsuit , $ZnCl_2$ -BTEAC.

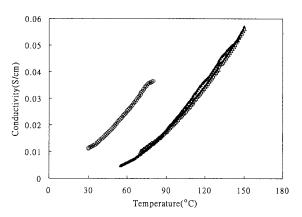


Fig. 11. Temperature dependence of the electrical conductivity of the two binary molten mixtures with EMIC 60 mol%. \circ , AlCl₃-EMIC; \triangle , ZnCl₂-EMIC.

presumably the monomeric ZnCl₄²⁻ anion; however, the exact behavior of the melt needs to be verified by spectroscopy.

Figure 8 shows that, in the ZnCl₂-EMIC melt, the conductivity is almost constant at 30 to 50 mol% ZnCl₂, and that it considerably increases from 70 to 170 °C. The fact that the conductivity decreases beyond 50mol%ZnCl₂ is similar to the ZnCl₂-BPC system, owing to the considerable increase in crosslinking and resultant tightening of the polyelectrolyte structure. However, spectroscopic study is needed to obtain further information of the ZnCl₂-EMIC melt system.

Figure 9 shows that the conductivities at 110 - 170 °C, gradually decrease at 30 - 60 mol% $\rm ZnCl_2$ and the values are about 0.001 to 0.008 S/cm which

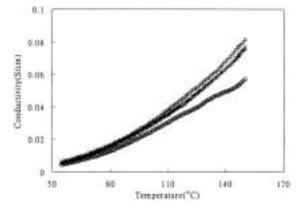


Fig. 12. The electrical conductivity of 40 mol% ZnCl₂:60 mol% EMIC melt as a function of temperature at various storage days. Storage days: \circ , 0 day(instantly); \diamond , 1 day; \triangle , 3 days; \square , 5 days.

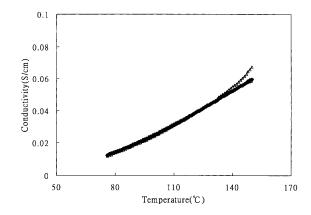


Fig. 13. The electrical conductivity of 50 mol% ZnCl₂:50 mol% EMIC melt as a function of temperature at various storage days. Storage days: \circ , 0 day(instantly); \diamond , 1 day; \triangle , 3 days; \square , 5 days.

are smaller by one order of magnitude than those of the ZnCl₂-EMIC melt systems.

Figure 10 shows the electrical conductivities of the melts $\rm ZnCl_2\text{-}BPC$, $\rm ZnCl_2\text{-}EMIC$ and $\rm ZnCl_2\text{-}BTEAC$ at 40% $\rm ZnCl_2$ as a function of temperature. The $\rm ZnCl_2\text{-}EMIC$ melt has the largest slope of the conductivity as a function of temperature and clearly a higher conductivity than the other two melts have. The results may be explained in terms of the planarity and lower lattice energy. Moreover, the $\rm ZnCl_2\text{-}EMIC$ melt system also shows a remarkable increase in the conductivity as a function of the composition. As to the conductivities, $\rm ZnCl_2\text{-}EMIC > ZnCl_2\text{-}BPC > ZnCl_2\text{-}BTEAC$.

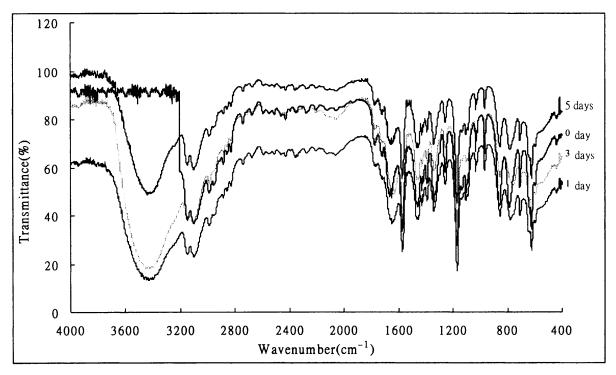


Fig. 14. The FTIR spectrum of 40 mol% ZnCl₂:60 mol% EMIC melt at various storage days.

In a previous paper [2], the conductivities of RTMS containing AlCl₃ have been concluded to be in the sequence AlCl₃-EMIC > AlCl₃-BPC > AlCl₃-BTEAC. Thus, binary melt system containing EMIC seem to have, in general, larger conductivities than those containing BPC and BTEAC, which may be attributed to the degree of planarity and the scale of lattice energy.

In Fig. 11 the conductivity in ZnCl₂-EMIC melt containing 60 mol% EMIC is compared with that of the corresponding binary AlCl₃-EMIC as a function of temperature, which indicates that the two melt systems have a similarity in a gradual increase in the conductivities with increasing temperature. Further, Fig. 11 also indicates that a higher temperature by about 40 °C is needed for the ZnCl₂-EMIC melt system to have comparable conductivity which that of the AlCl₃-EMIC, which has a higher conductive than the ZnCl₂-EMIC melt system. This is presumable because the AlCl₄⁻ ion is species has a larger ionic mobility due to its monovalent ion in contrast to the divalent ZnCl₄²⁻. In addition, ZnCl₄ is polymerized to some extent by corner sharing.

In the present study, the stability of the ZnCl₂-EMIC melt systems is explored by the effect of external environment on the conductivity and the FTIR spectrum. Figures 12 and 13 show that the conductivities of the ZnCl₂-EMIC melts, measured instantly after the melt prepared in a glove box and repeatedly after storing in a simple container for one day, three days and five days. Further, a spectroscopic analysis of the 40 mol% ZnCl₂ - 60mol% EMIC melt was carried out by FTIR after the conductivity measurement; the FTIR spectrum is shown in Figure 14. Figures 12 and 13 indicate that the effect of external environment on the ZnCl₂-EMIC melt is slight. The conductivity of the melt stored in a simple container for one day, three days and five days was similar but slightly higher than that of the newly prepared one. The slight increase may be explained in terms of the effect of moisture in the environment; the O-H stretching is observed as seen from Fig. 14, except for the spectrum of the newly prepared sample. Further, Fig. 14 reveals that these spectra are apparently similar except for the absorption around 3400 cm⁻¹ assignable to the O-H stretching. Consequently, it can be concluded that, concerning the conductivities, the influence of the environment on the ZnCl₂-EMIC melt is slight and this melt can be classified as stable.

Conclusions

The sequence of conductivities for the three binary melt systems is $\rm ZnCl_2\text{-}EMIC > ZnCl_2\text{-}BPC > ZnCl_2\text{-}BTEAC$. In the $\rm ZnCl_2\text{-}BPC$ system, the conductivities at 70 to 150 °C have a maximum at 40 mol% $\rm ZnCl_2$. The lowest activation energy is observed at 25.21 kJ/mol for the $\rm ZnCl_2\text{-}EMIC$ system; its conductivity is constant from 30 to 50 mol% $\rm ZnCl_2$, while it considerably increases from 70 to 150 °C. As to the $\rm ZnCl_2\text{-}BTEAC$ system, the conductivities in the range 110 - 170 °C gradually decrease for 30 to 60 mol% $\rm ZnCl_2$.

- [1] C. L. Hussey, Electrochem. 67, 527 (1999).
- [2] H. -Y. Hsu and C. -C. Yang, Z. Naturforsch. 56a, 670 (2001).
- [3] N. Koura, T. Endo, and Y. Idemoto, J. Non-Cryst. Sol. 205-207, 650 (1996).
- [4] Y.-F. Lin and I. -W. Sun, Electrochim. Acta 44, 2771 (1999).
- [5] P.-Y. Chen, M.-C. Lin, and I.-W. Sun, J. Electrochem. Soc. 147, 3350 (2000).
- [6] P.-Y. Chen and I.-W. Sun, Electrochim. Acta 46, 1169 (2001).
- [7] R. A. Carpio, L. A. King, F. C. Kibler, Jr., and A. A. Fannin, Jr., J. Electrochem. Soc. 126, 1650 (1979).
- [8] K. Ito, N. Nishina, and H. Ohno, Electrochim. Acta 45, 1295 (2000).
- [9] J. D. Edwards, C. S. Taylor, A. S. Russell, and L. F. Maranville, J. Electrochem. Soc. 90, 527 (1952).
- [10] H. Every, A. G. Bishop, M. Forsyth, and D. R. Mac-Farlane, Electrochim. Acta 45, 1279(2000).

A comparison of the electrical conductivities of ZnCl₂-EMIC melts with those of the AlCl₃-EMIC melts previously studied indicates that the two melt systems have a similar tendency as to temperature, and that a temperature higher by about 40 °C is needed for the ZnCl₂-EMIC melt system to have comparable conductivities with those of AlCl₃-EMIC.

The stability of the ZnCl₂-EMIC system has also been examined, and it may be concluded that the effect of the environment is slight and that the ZnCl₂-EMIC melt can be classified as stable.

Acknowledgement

We are indebted to Professor Isao Okada for advise.

- [11] M. Hirao, K. Ito, and H. Ohno, Electrochim. Acta 45, 1291 (2000).
- [12] D. R. McFarlane, J. Sun, J. Golding, P. Meakin, and M. Forsyth, Electrochim. Acta 45, 1271 (2000).
- [13] A. J. Easteal and C. A. Angell, J. Phys. Chem. **74**, 3987 (1970).
- [14] C. A. Angell and D. M. Gruen, J. Phys. Chem. 70, 1601 (1966).
- [15] W. E. Smith, J. Brynestad, and G. P. Smith, J. Chem. Phys. 52, 3890 (1970).
- [16] S. J. Cyvin, P. Klaboe, E. Rytter, and H. A. Oye, J. Chem. Phys. 52, 2776 (1970).
- [17] Y. Castrillejo, M. A. Gracia, A.-M. Martinez, C. Abejon, P. Pasquer, and G. Picard, J. Electroanal. Chem. 434, 43 (1997).
- [18] R. B. Ellis, J. Electrochem Soc. 113, 485 (1966).
- [19] H. Hayashi, K. Uno, Z.-I. Takehara, and A. Katagiri, J. Electrochem. Soc. 140, 386 (1993).